MediaWiki-API-Ergebnis

This is the HTML representation of the JSON format. HTML is good for debugging, but is unsuitable for application use.

Specify the format parameter to change the output format. To see the non-HTML representation of the JSON format, set format=json.

See the complete documentation, or the API help for more information.

{
    "batchcomplete": "",
    "continue": {
        "gapcontinue": "Rittal_Rack",
        "continue": "gapcontinue||"
    },
    "warnings": {
        "main": {
            "*": "Subscribe to the mediawiki-api-announce mailing list at <https://lists.wikimedia.org/mailman/listinfo/mediawiki-api-announce> for notice of API deprecations and breaking changes."
        },
        "revisions": {
            "*": "Because \"rvslots\" was not specified, a legacy format has been used for the output. This format is deprecated, and in the future the new format will always be used."
        }
    },
    "query": {
        "pages": {
            "237": {
                "pageid": 237,
                "ns": 0,
                "title": "Reproducing Polynomials with B-Splines",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "<section begin=\"head\"/>\n[[Datei:bspline_family.png|right|150px|Family of B-splines up to N=4]]\nA B-Spline of order <math>N</math> is known to be able to reproduce any polynomial up to order <math>N</math>:\n\n<math>\n\\sum_{n \\in \\mathbb{Z}} c_{m,n} \\beta_N (t - n) = t^m\n</math>\n\nIn words, a proper linear combination of shifted versions of a B-Spline can reproduce any polynomial up to order <math>N</math>. This is needed for different applications, for example, for the Sampling at Finite Rate of Innovation (FRI) framework. In this case any kernel <math>\\varphi</math> reproducing polynomials (that is, satisfying the Strang-Fix conditions) can be used. However, among all possible kernels, the B-Splines have the smallest possible support.\n\nAn important question is how to obtain the coefficients <math>c_{m,n}</math> for the reproduction-formula. In this small article, I describe one way.\n<section end=\"head\"/>\n\nStarting from\n\n<math>\n\\sum_{n \\in \\mathbb{Z}} c_{m,n} \\varphi(t - n) = t^m\n</math>\n\nthe coefficients can be obtained using the dual of <math>\\varphi</math>, <math>\\tilde{\\varphi}</math><ref>P.L. Dragotti, M. Vetterli, T.Blu: \"Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon Meets Strang-Fix\", ''IEEE Transactions on Signal Processing'', vol. 55, No. 5, May 2007</ref> (I set <math>\\beta_N = \\varphi</math> for consistency with my notes):\n\n<math>\nc_{m,n} = \\int_{-\\infty}^{\\infty} t^m \\tilde{\\varphi}(t - n)\\,dt\n</math>\n\nHowever, even if the dual would be known, solving the infinite integral is only feasible when the dual has finite support. This is the case with the B-Spline itself but not with its dual!\n\nA closer look at the formula tells that this is nothing more than a convolution (under the assumption that <math>\\tilde{\\varphi}</math> is symmetric which is the case):\n\n<math>\nc_{m,n} = \\int t^m \\tilde{\\varphi}(-(n-t))\\,dt = \\int t^m \\tilde{\\varphi}(n-t)\\,dt = (t^m * \\tilde{\\varphi})(n)\n</math>\n\nNow, this can be transformed to fourier domain:\n\n<math>\n(t^m * \\tilde{\\varphi})(n) = \\mathcal{F}^{-1}\\left\\{ \\mathcal{F}\\left\\{t^m\\right\\} \\tilde{\\Phi}(\\omega)\\right\\} =  \\mathcal{F}^{-1}\\left\\{ j^m \\sqrt{2\\pi} \\delta^{(n)}(\\omega) \\tilde{\\Phi}(\\omega) \\right\\} = j^m \\sqrt{2\\pi} \\mathcal{F}^{-1}\\left\\{\\delta^{(n)}(\\omega) \\tilde{\\Phi}(\\omega) \\right\\}\n</math>\n\nWriting the inverse of this expression yields:\n\n<math>\nj^m \\sqrt{2\\pi} \\frac{1}{\\sqrt{2\\pi}} \\int_{-\\pi}^{\\pi} \\delta^{(n)}(\\omega) \\tilde{\\Phi}(\\omega) e^{j\\omega n}\\,d\\omega = j^m \\int_{-\\infty}^{\\infty} \\delta^{(n)}(\\omega) \\underbrace{\\tilde{\\Phi}(\\omega) e^{j\\omega n}}_{f(\\omega)}\\,d\\omega\n</math>\n\nIt is known that<ref>http://en.wikipedia.org/wiki/Dirac_delta_function</ref>:\n\n<math>\n\\int \\delta^{(n)}(x) f(x)\\,dx = (-1)^n f^{(n)}(0) \n</math>\n\nso that\n\n<math>\nj^m \\int_{-\\infty}^{\\infty} \\delta^{(n)}(\\omega) f(\\omega)\\,d\\omega = j^m (-1)^m \\left. \\frac{\\partial^m}{\\partial \\omega^m} f(\\omega) \\right|_{\\omega = 0}\n</math>\n\nNow the whole procedure has been reduced to calculating the derivative of <math>f(\\omega)</math> and set the result to zero.\n\nAn open question is how to obtain the dual of <math>\\varphi</math>. As the reproduction formula spans a vector space, <math>\\varphi</math> must be at least bi-orthogonal to <math>\\tilde{\\varphi}</math>. This translates in fourier domain to<ref>S. Mallat: \"A Wavelet Tour of Signal Processing\", ''Academic Press'' 1999</ref>:\n\n<math>\n\\tilde{\\Phi}(\\omega) = \\frac{\\Phi(\\omega)}{\\sum_{k \\in \\mathbb{Z}} |\\Phi(\\omega + 2\\pi k)|^2}\n</math>\n\nThe fourier transform of a B-Spline of order <math>N</math> is (e.g. <ref>M.Unser: \"Splines - A Perfect Fit for Signal and Imaging Processing\", ''IEEE Signal Processing Magazine'' Nov. 1999</ref>):\n\n<math>\n\\Beta_N(\\omega) = \\Phi(\\omega) = \\left( \\frac{\\sin(\\omega/2)}{\\omega/2} \\right)^{N+1} =\n\\mathrm{sinc}^{N+1}(\\omega/2)\n</math>\n\nThe following derivation of the sum is borrowed from <ref>M.J.C.S. Reis, P.J.S.G. Ferreira, S.F.S.P. Soares: \"Linear combinations of B-splines as generating functions for signal approximation\", ''Elsevier Digital Signal Processing 15'', 2005</ref>. For this derivation to work, I set <math>L=N+1</math> temporarily:\n\n<math>\n\\sum_{k \\in \\mathbb{Z}} |\\Phi(\\omega + 2\\pi k)|^2 = \n\\sum_{k \\in \\mathbb{Z}} \\left|\\mathrm{sinc}\\left(\\frac{1}{2}(\\omega + 2\\pi k)\\right)^L \\right|^2 =\n\\sum_{k \\in \\mathbb{Z}} \\left|\\mathrm{sinc}\\left(\\frac{1}{2}(\\omega + 2\\pi k)\\right) \\right|^{2L}\n</math>\n\nand because <math>2L</math> is always even:\n\n<math>\n= \\sum_{k \\in \\mathbb{Z}}\\frac{\\sin^{2L}(\\frac{1}{2}(\\omega + 2\\pi k))}{\\left(\\frac{1}{2}(\\omega + 2\\pi k)\\right)^{2L}}\n= \\sum_{k \\in \\mathbb{Z}}\\frac{\\sin^{2L}(\\frac{\\omega}{2} + \\pi k))}{(\\frac{\\omega}{2} + \\pi k)^{2L}}\n</math>\n\nBecause of the periodicity it is known that\n\n<math>\n\\sin^{2L}(x + \\pi k) = \\sin^{2L}(x)\n</math>\n\nsuch that\n\n<math>\n= \\sin^{2L}\\left(\\frac{\\omega}{2}\\right) \\sum_{k \\in \\mathbb{Z}}\\frac{1}{(\\frac{\\omega}{2} + \\pi k)^{2L}}\n</math>\n\nAnd finally the following relation is used<ref>L.V. Ahlfors: \"Complex Analysis\", ''McGraw-Hill'', 1979</ref>:\n\n<math>\n\\sum_k \\frac{1}{(x + \\pi k)^{2L}} = -\\frac{1}{(2L-1)!} \\frac{d^{2L-1}}{dx^{2L-1}} \\cot{x}\n</math>\n\nin order to finally obtain:\n\n<math>\n\\sum_{k \\in \\mathbb{Z}} \\left|\\mathrm{sinc}\\left(\\frac{1}{2}(\\omega + 2\\pi k)\\right)^L \\right|^2 =\n-\\sin^{2L}\\left(\\frac{\\omega}{2}\\right) \\frac{1}{(2L-1)!} \\frac{d^{2L-1}}{d\\left(\\frac{\\omega}{2}\\right)^{2L-1}} \\cot{\\left(\\frac{\\omega}{2}\\right)}\n</math>\n\nand with <math>L = N+1</math>:\n\n<math>\n\\sum_{k \\in \\mathbb{Z}} |\\Phi(\\omega + 2\\pi k)|^2 =\n-\\sin^{2(N+1)}\\left(\\frac{\\omega}{2}\\right) \\frac{1}{(2N+1)!} \\frac{d^{2N+1}}{d\\left(\\frac{\\omega}{2}\\right)^{2N+1}} \\cot{\\left(\\frac{\\omega}{2}\\right)}\n</math>\n\nTherefore, together with <math>\\Phi(\\omega)</math> this yields:\n\n<math>\n\\tilde{\\Phi}(\\omega) = \\frac{(2N+1)!}{\\left(\\frac{\\omega}{2}\\right) \\sin\\left(\\frac{\\omega}{2}\\right)^{N+1} \\frac{d^{2N+1}}{d\\left(\\frac{\\omega}{2}\\right)^{2N+1}} \\cot{\\left(\\frac{\\omega}{2}\\right)}}\n</math>\n\nand finally substituting for <math>t(\\omega)</math>:\n\n<math>\nf(\\omega) = \\frac{(2N+1)!}{\\left(\\frac{\\omega}{2}\\right) \\sin\\left(\\frac{\\omega}{2}\\right)^{N+1} \\frac{d^{2N+1}}{d\\left(\\frac{\\omega}{2}\\right)^{2N+1}} \\cot{\\left(\\frac{\\omega}{2}\\right)}} e^{j \\omega n}\n</math>\n\nAs this function is not well defined it is better to use the limit:\n\n<math>\nc_{m,n} = j^m \\lim_{\\omega \\rightarrow 0} f(\\omega)\n</math>\n\n= Examples for a cubic spline =\n\nFor a cubic spline (N=3) the coefficients are:\n\n<math>\n\\begin{array}{lcl}\nc_{0,n}   & = & 1 \\\\\nc_{1,n}   & = & n \\\\\nc_{2,n}   & = & \\frac{1}{3}\\left( -1 + 3n^2 \\right) \\\\\nc_{3,n}   & = & -n + n^3\n\\end{array}\n</math>\n\n[[Datei:poly_repro_quad.png|center|cubic spline reproducing polynomial of order 2]]\n\n[[Datei:poly_repro_cubic.png|center|cubic spline reproducing polynomial of order 3]]\n\n= References =\n\n<ref name=\"schoenberg\">I.J. Schoenberg: \"Cardinal interpolation and spline functions\", ''J. Approx. Theory volume 2'', pp. 167-206, 1969</ref>\n\n<references/>\n\n= Comments =\n\n<comments />{{:{{TALKSPACE}}:{{PAGENAME}}}}\n\n[[Kategorie:Weblog]]"
                    }
                ]
            },
            "323": {
                "pageid": 323,
                "ns": 0,
                "title": "Retis",
                "revisions": [
                    {
                        "contentformat": "text/x-wiki",
                        "contentmodel": "wikitext",
                        "*": "__NOTOC__\n\n== Willkommen auf retis.nobaq.net.! ==\n\n=== Wieso bin ich hier? ===\n\nVermutlich bist du hier weil du auf eine Seite willst die auf diesem Server gehostet ist oder gehostet war. F\u00fcr Fragen: niki at nobaq punkt net. Bitte folge den Links (ein paar gehostete Seiten):\n\n* http://www.nobaq.net\n* http://www.hyperlex.at\n* http://Niki.Hammler.net\n* http://www.nobaq.at\n* http://www.nobaq.eu\n* http://www.hammler.info\n* http://niki.priv.at\n* https://secure.nobaq.net\n\n=== Wer ist das? ===\n\nDieser Webserver ist retis.nobaq.net (92.82.102.173/29 bzw. 2001:7b8:3cd:3::173). Es ist der Webserver von Nikolaus Hammler. Der Name retis ist lateinisch und bedeutet Netz. Der virtuelle Server befindet sich auf [[Server|radix.intra.nobaq.net]]. Fuer weitere Nodes & Server, siehe [[Netzwerk]].\n\n=== Dienste ===\n\n* Webserver (apache), horde, zarafa-webaccess, ...\n* XMPP/Jabber (prosody)\n* FTPS (pureftp) zum Zugriff auf Webspace"
                    }
                ]
            }
        }
    }
}