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1 Task 1 - The Momentum Operator
In this task it should be shown that
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Proof. My proof is based on this definition
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Using the product rule to solve the differential
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Let us look at the definition of

These can now be replaced in the following way

Schroedingers equation:
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Now the same can be done for the conjugated version
J . H \* H*
= (Gre) =5 -



and with the important observation that H* = H finally
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Now equations [I0] and [I2] can be inserted into equation [7}
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Now the Hamiltonian H (equation E[) is replaced:
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The terms in equation [14]are zero because they are imaginary and describe a potential.

But potential must always be real, so the terms become zero. After cancelling minus
and h:
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Following identity is used now:
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in order to obtain

—tr 2m] /V —YP(r)rVo*(r)) dr (18)
/vw))w() (19)
- [(uwnve @) i (20)

Using the theorem of Gauss:
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the first (volume) integral can be converted to a surface integral:
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The wave function must be squared-integrable, i.e.
| iR <o (25)
Therefore the surface integral must vanish. With further simplification I get:
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Again applied the theorem of Gauss (equation ;
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and for the same reason as before, the surface integral vanishes leaving only the second
integral:
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2 Task 3 - Floating Gate MOSFET

2.1 The Surface Potential

In this task it should be shown that the surface potential is given by
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The equivalent circuit diagram for the floating gate MOSFET can be drawn as in
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Figure 1: Floating gate
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Proof. The derivation begins using the charge conservation theorem with (J as the
reference point. As no charges are destroyed or generated, the following equation must

hold:

=+Q1+(—02) =Q1— Q2
Now replace the charges using the relation Q = C - U:

Qr = C1V1 — V3
where V7 and V5 can be expressed with the potential ¢z on the floating gate:
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Inserting equations [30] and [31] into equation
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¢r(C1+ C2) = C1Ve + QF (35)
and finally solving for ¢r:

bp = CiVa + QrF
E Ch1+Cy

2.2 Floating Point Potential as Function of t

In this task the surface potential ¢ (equation should be described as a function of
t when the input voltage is raised to Vj, at time ¢t = 0. In equation @ everything is
constant except Vi itself at the floating gate charges Qp, yielding:

QSF — Clv})p + QF(t)
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The charges change only through the tunneling current which can be described as:

(36)
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where A and B are constant and E represents the electric field in the substrate. E is
dependent on Vi but as this is constant, E itself is constant over time.

Charges over time can be obtained by integrating current over time, so integrating
equation [37] yields:
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Qo cancels out because the assumption is having no initial charges at ¢ = 0. Inserting
equation [39] in [36] gives the result
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It should be noted however, that F is a function of the oxide thickness. In a theoret-
ical description the field in a capacitor is homogenous, that means that F is piecewise
constant over the substrate. A different approach might be to calculate the tunneling
current I separately for both capacitors with their respective constant E and insert them
together into equation



3 Task 2 - Tunneling in Rectangular Potential

3.1 Calculation of Transmission Coefficient

Attached handwriting.

3.2 Discussion

As far as I understand the task, the following limit should be calculated:

lim 7'(%) (40)

Equation[d0]clearly goes to zero in this case, if all other parameters are set to a constant
value. Unfortunately I can give you no explanation why this should not be the case. But
in the last days I did excessive research on this topic. I searched papers, IEEE, spent
time at the library, searched google, books and even discussed with friends studying
physics in Austria (my home country). But nobody could give me an explanation and
there is no source discussing this issue.

From an intuitive point of view it should go to zero as everytime when we have h in
our expressions, they need to produce classical results if applied to huge objects outside
quantum world. Otherwise there would be something wrong. Concerning the reflection
coefficient: For sure, there is always a small probability that a particle will pass this
barriere, even if applied to non-quantum world. Although the probability is terrible low
and unrealistic. But the signification of a limit is not just setting the value to zero but
approaching to it. So if A becomes always smaller, smaller and smaller, the probability
will also get smaller, smaller and smaller. But in the limit, the probability need to be
zero, although at 7 = 0 + € there is a small probability left. Another issue: If the value
of equation [40] should not be zero then there are only two possibilities for a limit: Either
diverging or a fixed value, maybe dependent on the other parameters. This would mean
that that if I approach A — 0 I would always get the same finite probability that a
particle is passing.

The one source I found which states that equation should not be zero is WikipediaE]
where tunneling is derived with the semi-classical approach:

If we take the classical limit of all other physical parameters much larger
than Planck’s constant, abbreviated as h — 0, we see that the transmission
coeflicient correctly goes to zero. This classical limit would have failed in the
unphysical, but much simpler to solve, situation of a square potential.

I wanted to find the author who posted this to Wikipedia in order to discuss with
him what is his source and why this should be the case. I discovered that this entry was
made somewhere in 2004 by a 15 years old pupil from the United States. All contact
data (e-mail, homepage) disappeared from the web.

"http://en.wikipedia.org/wiki/Quantum_tunneling


http://en.wikipedia.org/wiki/Quantum_tunneling

Apart from that I found dozens of books about quantum mechanics which all discuss
the tunneling by the rectangular barrier and most of them do not discuss any problems
with the derivation, in particular not what happens if A — 0.

Finally I found a few sources, including books, which clearly states that equation [40]
must be zero. As an example I will give the book ”Quantum Mechanics - Concepts and
Applications” [Il, p. 229]:

Taking the classical limit i — 0, the coefficients (4.66) and (4.67) reduce to
the classical result: R — 1 and T" — 0.

I also tried thinking about other ideas: Maybe I misunderstand and a different limit is
meant? Maybe it has something to do that the rectangular barriere itself is unrealistic?
For example when I take the Fourier transform of a rectangular, I will need an infinite
amount of sinoids to express the sharp step and there is also an effect called ringing
which only disappears in the limit.

If I am wrong with my assumptions I would be very interested about the solution of
this task.



4 Task 8 - My Opinion About Quantum Mechanics

Let me begin with physics and philosophy. The discovery of quantum mechanics was
for sure one of the greatest events in science in the last century. It drastically changed
the view about physics. Before everything was thought to be completely deterministic
and repeatable. And with proper equipment we have the opportunity to make errors in
experiments as small as we like. But quantum physics tells us now that an uncertainity
is inherent in physics itself. This does not only concern the theory itself but also opens
philosophical questions: Is there any randomness in nature or is everything completely
deterministic (as believed before)? Which role has the observing person? For classical
theory it does not matter if there is an observing person or not. In quantum physics it
suddenly it is an important issue. Related to this is the question of reality: In classical
physics we think that each measurement is part of a real physical object and if we
measure something it tells us more about the real world. In quantum physics it can be
proven that there are measurements where the result can not have been known before
the measurement. This leads to the question if everything we can measure is real or
also: What is reality?

Concerning engineering we have seen that if sizes become very small (in the region of
h) classical theorems do not hold any more but effects can be explained through quantum
mechanics. In the last century the developement of the computer was maybe the most
important invention. The first computers were only able to do simple calculations but
powerful computers we know from today can be built with the same concept by just using
massive amount of switches. Until now the growth of switches (transistors) per area can
be described with the well-known Moore’s law. It is exponential. Even today this law
still holds and this means that transistors need to be exceptionally small. The new
announced Intel Itanium 2 CPU (Tukwila) for example has over 2 billions of transistors
in just 700 square millimeters! In this range the transistors are so small that classical
field theories do not appropriately describe the behaviour anymore but it is necessary
to use quantum mechanics.

A practical example directly related is the use of specific valleys. The drain current
is directly dependent on the mobility of electrons and the mobility in turn is dependent
on the relaxation time and the the conductive mass in parallel to the MOS interface.
So it is very important to have a low conductive mass. 2-fold wvalleys have a lower
conductive mass than 4-fold valleys. So by designing the transistor in a way that the
electron occupancy in the 2-fold valleys are increased makes it possible to build smaller
size transistors.

Another very prominent example is Flash memory, a revolution in todays life. Flash
memory is based on floating gate transistors where a certain charge is injected in the float-
ing gate in order to store some information. This injection is done by Fowler-Nordheim
tunneling which would not be possible using classical physics. The development of Flash
memory made the rapid development of digital fotography possible and also revolution-
ized storage in general. Without the invention of Flash memory maybe we would still
use floppy disks. Devices whose ”intelligence” (firmware) can be upgraded or changed



by the user are possible with Flash ROM. Also the rapid progress of mobile devices was
only possible with cheap and reliable storage as Flash ROM.

Of course, there are also other fields which make use of quantum mechanic’s tunnel
effect: The electron miscroscope for example would not exist without the discovery of
tunneling.

But when we think of computer engineering we should not only focus on transistors.
The usage of transistors can not guarantee Moore’s law for a long time. But there are
scientists who generalized Moore’s law and see it just as a part of a more complex law: A
law which states that developement of nature grows exponentially: The beginning was
the developement of the universe, the evolution, followed by human intelligence which
includes exponential progress in science and developement. If such a law is true it means
that even if transistors reach their limit there will be new technology which displaces
the old one in order to preserve the law. And I think new technologies will even rely
more on quantum effects.

One example of such technology might be a new approach in computation which is
based on neural networks and intelligence. Until now, artificial neurons can be built in
computers but they have to be ”simulated” with many transistors (e.g. on a computer).
With floating gate MOSFETSs it might be possible to built up neural networks directly in
hardware - by using MOSFETSs not only as dumb switches but as energy-saving neurons.
They are not working in binary mode any more but with continous signals.

Another new technology might be quantum computers which are also based funda-
mentally on quantum mechanics. Nowadays such computers (except those consisting
of very few gates) can not yet be built but the theory suggests the powerful nature
of quantum computers: The introduction of a ¢-bit (quantum bit) can store any value
as a superposition of the values 0 and 1. When reading out the quantum register the
Schroedinger equation collapses and the observer gets a value of 0 or 1. The output is
dependent on the coefficients of the linear superposition of the quantum states. This
means: A quantum computer can perform calculation with all possible register values
simultaniously, as long as the content of the register is not read out! This way a quantum
computer can calculate specific operations highly in parallel - if used in an appropriate
way. An example which shows this power and also the implications on it is the well
known Shor Algorithm which makes it possible to solve the integer factorization prob-
lem in polynomial time. The algorithm is based on a classical part which reduces the
factorization problem to the problem of finding the rank of a multiplicative group of
integers modulo n, mathematically: Find the smallest r such that

z" = 1(mod N)

This problem in turn is equivalent to finding the period of the signal which is done by
the quantum fourier transform. This quantum algorithm can be done in O(logy N). The
principle is simple: Initialize a quantum register with a uniform distribution of length
logy N, then compute the function with a specific quantum circuit but without measuring
the state. Aslong as there is no measurement, the quantum register contains the solution
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for all values of . After reading out, the wave function collapses and produces values
of 0 and 1 described by their respective probabilities. These probabilities have their
highest value at the position of a multiple of r.

Almost all public key cryprography is based on the fact that factorization of an integer
in its prime factors takes at least over-polynomial time. So the practical application of
Shors algorithm would mean the apocalypse of the global cryptography infrastructure.
The one technology which would survive quantum computers are lattices but they require
a keylength of one megabyte for same security as for example 1024-bit RSA. There are
lots of other algorithms which could exploit the power of quantum computers such as
the Grover search algorithm which can search in an unordered database in O(y/n).

A third big issue related in computer science is quantum cryptography. Nowadays in
cryptography there is always a tradeoff between resources and security. The one proven
but also unrealistic encryption scheme is the One-Time pad which needs a key of the
same length as the data. All other schemes just rely on the fact that exhaustive keysearch
needs too much computational resources (usually exponential time with number of bits).
Quantum cryptography is another encryption scheme where it can physically proven that
it is secure: It is based on a similar principle as described above: The sender generates
a certain g-bit (usually identified by polarization or spin) which is destroyed as soon as
information is read out. So the system can detect if an attacker eavesdrop the channel.
There are already quantum cryptography systems available commercially.

However it must be noted that the system in the present state has many problems
and weaknesses:

e The quantum channel is only used for secure key exchange. The following cryp-
tography is done with classical block ciphers (such as AES)

e The exchange is based on the fact that the sender choses specific polarisations
and transmits them to the receiver in a classical way. This is needed in order to
verify which g-bits are correct (and should be used) and which not. This means
that a classical authentic channel must exist which usually also relies on classical
algorithms.

e The algorithm is probababilistic. The receiver does not know which g-bits might
have been eavesdropped, he can just compare which g-bits to chose based on the
list from above. So the receiver can only calculate the error ratio and detect an
eavesdropper based on a specific threshold above which key exchange is restarted.

e For this reason an attacker has also a small chance of success.

e Heavy noise additionally distorts the transmission in the channel.

For those and many other reasons many crytographers consider quantum cryptography
not as a solution for classical cryptography. Also, because of the mix with classical
algorithms and the higher complexity, quantum cryptographie systems can be attacked
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in different ways. However, the technology shows what is possible and there might be a
lot of ways to improve it.

My examples should show how important quantum cryptography is in microelectronics
and computer science in the present time and how important it might be in future.
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