Reproducing Polynomials with B-Splines: Unterschied zwischen den Versionen

Aus NOBAQ
Zur Navigation springenZur Suche springen
Zeile 1: Zeile 1:
 
<section begin="head"/>
 
<section begin="head"/>
 
[[Datei:bspline_family.png|right|150px|Family of B-splines up to N=4]]
 
[[Datei:bspline_family.png|right|150px|Family of B-splines up to N=4]]
A B-Spline of order <math>N</math> is known to be able to reproduce any polynomial up to order <math>N</math><ref>I.J. Schoenberg: "Cardinal interpolation and spline functions", ''J. Approx. Theory volume 2'', pp. 167-206, 1969</ref>:
+
A B-Spline of order <math>N</math> is known to be able to reproduce any polynomial up to order <math>N</math>:
  
 
<math>
 
<math>
Zeile 7: Zeile 7:
 
</math>
 
</math>
  
In words, a proper linear combination of shifted versions of a B-Spline can reproduce any polynomial up to order <math>N</math>. This is needed for different applications, for example, for the Sampling at Finite Rate of Innovation (FRI) framework<ref>P.L. Dragotti, M. Vetterli, T.Blu: "Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon Meets Strang-Fix", ''IEEE Transactions on Signal Processing'', vol. 55, No. 5, May 2007</ref>. In this case any kernel <math>\varphi</math> reproducing polynomials (that is, satisfying the Strang-Fix conditions) can be used. However, among all possible kernels, the B-Splines have the smallest possible support.
+
In words, a proper linear combination of shifted versions of a B-Spline can reproduce any polynomial up to order <math>N</math>. This is needed for different applications, for example, for the Sampling at Finite Rate of Innovation (FRI) framework. In this case any kernel <math>\varphi</math> reproducing polynomials (that is, satisfying the Strang-Fix conditions) can be used. However, among all possible kernels, the B-Splines have the smallest possible support.
  
 
An important question is how to obtain the coefficients <math>c_{m,n}</math> for the reproduction-formula. In this small article, I describe one way.
 
An important question is how to obtain the coefficients <math>c_{m,n}</math> for the reproduction-formula. In this small article, I describe one way.
Zeile 155: Zeile 155:
 
= References =
 
= References =
  
<references/>
+
<references>
 +
<ref>P.L. Dragotti, M. Vetterli, T.Blu: "Sampling Moments and Reconstructing Signals of Finite Rate of Innovation: Shannon Meets Strang-Fix", ''IEEE Transactions on Signal Processing'', vol. 55, No. 5, May 2007</ref>
 +
<ref>I.J. Schoenberg: "Cardinal interpolation and spline functions", ''J. Approx. Theory volume 2'', pp. 167-206, 1969</ref>
 +
</references>
  
 
= Comments =
 
= Comments =

Version vom 19. Juli 2010, 16:36 Uhr

Family of B-splines up to N=4

A B-Spline of order is known to be able to reproduce any polynomial up to order :

In words, a proper linear combination of shifted versions of a B-Spline can reproduce any polynomial up to order . This is needed for different applications, for example, for the Sampling at Finite Rate of Innovation (FRI) framework. In this case any kernel reproducing polynomials (that is, satisfying the Strang-Fix conditions) can be used. However, among all possible kernels, the B-Splines have the smallest possible support.

An important question is how to obtain the coefficients for the reproduction-formula. In this small article, I describe one way.


Starting from

the coefficients can be obtained using the dual of , (I set for consistency with my notes):

However, even if the dual would be known, solving the infinite integral is only feasible when the dual has finite support. This is the case with the B-Spline itself but not with its dual!

A closer look at the formula tells that this is nothing more than a convolution (under the assumption that is symmetric which is the case):

Now, this can be transformed to fourier domain:

Writing the inverse of this expression yields:

It is known that[1]:

so that

Now the whole procedure has been reduced to calculate the derivative of and set the result to zero.

An open question is how to obtain the dual of . As the reproduction formula spans a vector space, the must be at least bi-orthogonal to . This translates in fourier domain to[2]:

The fourier transform of a B-Spline of order is (e.g. [3]):

The following derivation of the sum is borrowed from [4]. For this derivation to work, I set temprarily:

and because is always even:

Because of the periodicity it is known that

such that

And finally the following relation is used:

in order to finally obtain:

and with :

Therefore, together with this yields:

and finally substituting for :

As this function is not well defined it is better to use the limit:

Examples for a cubic spline

For a cubic spline (N=3) the coefficients are:

cubic spline reproducing polynomial of order 2
cubic spline reproducing polynomial of order 3

References

  1. http://en.wikipedia.org/wiki/Dirac_delta_function
  2. S. Mallat: "A Wavelet Tour of Signal Processing", Academic Press 1999
  3. M.Unser: "Splines - A Perfect Fit for Signal and Imaging Processing", IEEE Signal Processing Magazine Nov. 1999
  4. M.J.C.S. Reis, P.J.S.G. Ferreira, S.F.S.P. Soares: "Linear combinations of B-splines as generating functions for signal approximation", Elsevier Digital Signal Processing 15, 2005

Referenzfehler: Das in <references> definierte <ref>-Tag hat kein Namensattribut.
Referenzfehler: Das in <references> definierte <ref>-Tag hat kein Namensattribut.

Comments

<comments />

Manu said ...

Bussi

--Manu 19:47, 19. Jul. 2010 (MSD)