Reproducing Polynomials with B-Splines

Aus NOBAQ
Version vom 19. Juli 2010, 14:03 Uhr von Niki (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „A B-Spline of order <math>N</math> is known to be able to reproduce any polynomial up to order <math>N</math>: <math> \sum_{n \in \mathbb{Z}} c_{m,n} \beta_N (t …“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springenZur Suche springen

A B-Spline of order is known to be able to reproduce any polynomial up to order :

In words, a proper linear combination of shifted versions of a B-Spline can reproduce any polynomial up to order . This is needed for certain applications, for example, for the Sampling at Finite Rate of Innovation (FRI) framework where where any kernel reproducing polynomials, that is, satisfying the Strang-Fix conditions, can be used. However, among all possible kernels, the B-Splines have the smallest possible support.